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We present an extensive analytical and numerical analysis of secondary instabilities in directional
solidification in the limit of high speed, which is by now accessible in real experiments. The important
feature in this regime is that front dynamics are quasilocal. From symmetry and scaling arguments, we
write down the general form of the nonlinear equation for the interface, an equation to which the present
study pertains. In order to determine the values of the coefficients, a derivation from the fully nonlocal
model was performed. We consider the general case where mass diffusion is allowed in both phases, and
its special restrictions to the one-sided model (appropriate for regular materials), and the symmetric one
(appropriate for liquid crystals). We first focus on the appearance of cellular structures (primary instabil-
ity). In the symmetric case the structures are rather shallow, in accord with experiments. In the one-
sided model, the front generically develops, in a certain region of parameter space, cusp singularities.
These can be avoided by allowing a small amount of diffusion in the growing phase; the front then
reaches a stationary state. Stationary states are in turn subject to instabilities (secondary instabilities).
Besides the Eckhaus instability, we find parity-breaking (PB), vacillating-breathing (VB), and period-
halving (PH) bifurcations, regardless of the details of the model, a fact which points to their genericity.
Another line of research developed in this paper is the analytical analysis of these bifurcations. The PB
and PH bifurcations are analyzed close to the codimension-two bifurcation point where the first and
second harmonics are dangerous. The results emerging from this analysis are supported by the full
numerics. The VB mode is analyzed analytically by means of an analogy with the problem of a quasi-
free-electron in a crystal. Finally we discuss some questions beyond secondary instabilities. We find that
this system exhibits an anomalous growth mode, observed in many systems. Among other pertinent
features, we find that the broken-parity (BP) state is subject to a long-wavelength instability, causing a
fragmentation of the extended state. This provides a signature of its “solitarylike” persistence observed
in many experiments. Another important dynamical characteristic is that on increase of the growth
speed the VB mode suffers a PB instability, and acquires a quasiperiodic motion (mixture of BP and VB
modes which are incommensurate), which constitutes a prelude to a chaotic regime, discussed in the
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companion paper.

PACS number(s): 61.50.Cj, 81.30.Fb, 05.70.Fh

I. INTRODUCTION

When an impure solid is grown by directional
solidification—that is, by pulling the sample at a con-
stant speed along an external thermal gradient—the ini-
tially planar liquid-solid interface undergoes a morpho-
logical instability at a critical value of the pulling speed:
the front turns into a periodic cellular structure on the
scale of, say, a few um. This is the Mullins-Sekerka [1]
instability, driven by impurity diffusion. In general, the
interface structure depends on three major factors: (i) the
microscopic nature of the interface, i.e., whether it is
smooth or rough; (ii) the amount of impurity diffusion in
the growing phase; and (iii) the partition coefficient (that
is, the ratio of the equilibrium impurity concentration in
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the solid to that in the liquid). Point (i) pertains to the
roughening transition. Indeed, if the melting tempera-
ture is below the roughening one, the surface is micro-
scopically smooth. The growth process operates basically
through two-dimensional (2D) nucleation, and/or via
screw dislocations. In such a case the surface shows
faceted structures. This is a subject in which we are not
interested here. Our study focuses on the other category,
where the surface is rough on the microscopic scale. The
resulting pattern is rounded. The importance of (ii) is
that for ordinary materials, the diffusion coefficient in the
solid phase is several orders of magnitude smaller than in
the liquid phase; the diffusion is quasi-one-sided. In such
a situation, the interface often develops deep grooves,
which sometimes generate crystal defects, which—
although very crucial for the quality of the solid—are
rather secondary to the understanding of interface dy-
namics. The nematic system, experiments on which were
first initiated by Oswald, Bechhoefer, and Libchaber [2],
are canonical systems for the study of secondary
instabilities—the primary instability denomination refers
to that of the planar front. Indeed, there the impurity
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diffusion coefficients in both phases are of comparable or-
ders of magnitude. This implies that the nematic system
can support diffusion, whose main role is the creation of a
short-circuit current which operates on the scale of a
wavelength. As a consequence, the interface excursion
remains limited; the structure is rather shallow. The im-
portance of point (iii) is that a small partition coefficient
implies more impurity accumulation in the grooves, thus
reducing the growth dynamics there, and consequently
increasing the front depletion.

The absence of deep grooves in this system makes it
more flexible, in the sense that wavelength variation and
adjustment are efficient on a time scale of the order of a
second, while these are much longer with typical sub-
stances. This is one of the main reasons that makes the
identification of secondary instabilities easier, and which
has led to the discovery of many of them first in liquid
crystals. As we shall see, most of the instabilities are
common to both situations whether diffusion in the grow-
ing phase is negligible or not.

The denomination secondary instability is in general
taken to mean that the cellular structure whose stability
is investigated has bifurcated from a structureless state
(the planar front). The instability from the planar front is
referred to as the primary instability. However, this
definition is somewhat restrictive. For example, the
lamellar eutectic structure manifests instabilities similar
to those we are investigating here, although that struc-
ture does not originate from the loss of stability of a pla-
nar interface; it originates from a complex transient
mechanism, governed both by capillary forces—that
enter the nucleation process—and interlamellar diffusion
which is necessary for the cooperative growth of both
solid phases. Therefore, we might find it useful to think
of secondary instabilities as the instability of a cellular
steady solution, regardless of the origin of that solution.

The problem of pattern formation has experienced an
interesting revival since the discovery of various secon-
dary instabilities that we shall describe below. Indeed,
for a long time—basically since the Mullins-Sekerka
work until a few years ago—the only secondary instabili-
ty that was expected was the Eckhaus instability. The ex-
perimental effort by Simon, Bechhoefer, and Libchaber
[3] on directional growth of a nematic phase gave the first
evidence pertaining to what may be called the solitary
mode. Indeed, it has been observed that at high enough
growth speed, there appear small inclusions of asym-
metric cells (a few cells), which have the following
characteristics: they are approximately twice as wide as
the symmetric cells, and they travel sideways at a con-
stant speed. Since that discovery, similar observations
have been made on different systems, such as eutectics
[4], the printer system [S], and so on [6-8]. The fact that
this mode of growth was observed in systems that seem
diverse could point to the fact that it may be simply a dis-
guised form of only a few prototypes. Coullet, Goldstein,
and Gunaratne [9] suggested that this phenomenon may
result from the loss of stability of the initially symmetric
pattern. They built a phenomenological picture which
contained some interesting features. It was shown later
for eutectics [10] and for liquid-crystal systems [11] that
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the microscopic models do indeed support broken-parity
(BP) solutions. The present instability is a parity-
breaking (PB) one inasmuch as the original equations are
symmetric under reflexion at the growth axis. We shall
see that this instability always precedes a period-halving
(PH) one.

Another secondary instability is the one which we have
called vacillating breathing (VB), and for which we have
already given a brief account [12]. This is an instability
where the width of each cell oscillates in phase opposition
with its neighbors; hence, this is a period-doubling insta-
bility.

Coullet and Ioos [13] use symmetry arguments to clas-
sify ten generic instabilities; those presented above are
typical examples. It is important to know which of these
instabilities can be realized within a specific system. Here
we shall be concerned with an extensive study of secon-
dary instabilities in directional growth. Since most of the
instabilities observed on the nematic system occur at high
enough speed, we shall concentrate on this situation.
This regime offers a great advantage which lies in the
(legitimate) possibility to reduce the original growth
equations—which involve nonlocal and retarded
interactions—to a rather simple quasilocal equation
which is more tractable and on which we can easily ex-
emplify many of our studies. We should keep in mind,
however, that most of the reasoning (such as the explana-
tion given for the VB mode) will work perfectly well with
more complex equations. By using information from the
dispersion relation for a planar front, we shall write the
general form of the local equation by exploiting simple
symmetry and scaling arguments. In order to find the
coefficients of that equation, one needs, of course, to per-
form the derivation of the evolution equation from the
constitutive equations. In order to check that our results
are not specific to liquid-crystal systems, we shall study
the dynamics in the general situation where allowance of
an arbitrary diffusivity in the growing phase is made. We
find that the evolution equation accounts for (i) the Eck-
haus instability, (ii) a period-halving bifurcation, (iii) pari-
ty breaking, and (iv) vacillating-breathing, regardless of
the details of the model. The first instability is by now
classical, and we shall be brief in discussing it.

This equation also manifests other features that go
beyond secondary instabilities. A question that remains
to be elucidated pertains to the stability of the broken-
parity (BP) mode as an extended state. It emerges here
that this mode suffers a long-wavelength instability,
which we believe is caused by the persistence of the Eck-
haus instability. The BP state undergoes a fragmentation
process, which is a signature of its solitary character, re-
ported on in many experiments. Another important re-
sult is the coexistence of the BP and VB modes, a coex-
istence which is persistent in many experimental situa-
tions. These two modes seem often to maintain their
identity; the motion is quasiperiodic. A relatively small
variation of the growth velocity is sufficient to lead to
chaos via a quasiperiodic scenario. The transition to
chaos is the subject of the companion paper.

We should stress the fact that although this paper and
its companion deal with a variety of static and dynamical
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features, they are far from exhausting all possible
scenarios. For example, at high speed there are some ex-
periments which manifest rich dynamics, such as banded
structures, which may require the inclusion of additional
ingredients, namely kinetic effects [14]. Our main mes-
sage is that all the features encountered here (going from
order to chaos, and possibly other dynamics not studied
here) are accounted for within the minimal version of
crystal growth.

The scheme of this paper is as follows. In Sec. II we
set down the growth equation, and recall the Mullins-
Sekerka dispersion relation in the general case of the
two-sided model. In Sec. III we concentrate on the large
speed limit. We determine the characteristic time and
space scales. Then, using symmetry and scaling argu-
ments, we set down the general form of the evolution
equation. In Sec. IV, we give the evolution equation ob-
tained from the microscopic model. In Sec. V we
proceed to the determination of the steady-state solu-
tions, and their range of existence for liquid crystal sys-
tems, and then study secondary instabilities. In Sec. VI,
we discuss the same problem as in Sec. V for ordinary
materials. Section VII is devoted to the analytical
analysis of secondary instabilities. Section VIII presents
some results that go beyond secondary instabilities. Sec-
tion IX sums up our results.

II. BASIC EQUATIONS

A binary system is pulled at constant speed V along the
—z direction, parallel to a thermal gradient G. As usual
we neglect heat transport, and assume that the thermal
properties of both phases are identical. The minimum
version of crystal growth is by now standard, so we shall
directly write down the basic equations. Let ¢ and ¢’
denote the concentrations (defined as the number per unit
mass) of the minor component of the alloy in the solid (or
nematic) and liquid phases, respectively. We introduce
the dimensionless fields u=(c—c,)/Ac and u’'=(c’
—c, )/Ac in both phases, where ¢, is the initial liquid
concentration, Ac =c (1 —k)/k is the equilibrium misci-
bility gap, where k is the partition coefficient. Lengths
and time will be measured in units of /=2D /¥ and I%/D,
where V is the pulling speed, and D is the diffusion con-
stant in the liquid phase. In the bulk phases u and u'
obey mass conservation laws:

du

Ou _ o 50U

o ~Vut2 . >80, 2.1)
du' _ o2, du’

—at vVu +2—az , z<§(x,t), 2.2)

where §(x,t) is the instantaneous front position (we con-
sider only 1D deformations), and v=D'/D. For the one-
sided model, v=0, while v=1 for the symmetric model.
Since the concentration far ahead of the advancing front
is maintained at c¢=c_,, we have u(z— o )=u'(z
— — 0 )=0. The concentration fields are subject to the
continuity equation at the front [z =¢§(x,?)]:

Qu’ _du

Yan  on =2+on,[k+(1—k)u],

(2.3)
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where 0/0n stands for the normal derivative, and n, is
the z component of the normal which is taken to point
from the solid into the liquid. In Eq. (2.3) we have made
use of the condition ¢’=kc at the front, which amounts

in reduced variables to
u'=k(u—1). (2.4)

Finally chemical equilibrium at the front (appropriate for
molecularly rough interfaces) implies

u=1--—dy, 2.5)
Iy
where
_ ¥Ty __mAc
Y= Lac’ TG 2.6

are the reduced (by /) capillary and thermal lengths re-
spectively, where ¥ is the surface tension, T, the melting
temperature of the pure substance, m the absolute value
of the liquidus slope, L the latent heat per unit volume,
and « the front curvature taken to be positive for a con-
vex profile

_ ;xx
(1+g2072°

2.7

where here and in future differentiations are subscripted.
The set of Egs. (2.2)-(2.5) completely describes the
growth dynamics. This set admits a steady-state planar
solution moving at speed V, the linear stability analysis of
which yields the following dispersion relation [15]:

0+2—0,(1—k)—2—0,)V1+¢’+o

+kwq\/1+v2q2+va)=0 , (2.8)
where o is the amplification (or attenuation) rate, g the
wave number of the perturbation, and qud0q2+lT_ L
The planar front is stable if Re(w) <0 for all ¢’s. Con-
versely, it is unstable if Re(w)> 0 at least for one particu-
lar value of q. The critical situation is attained when
Re(w)=0 for a particular value of g, say g., while
Re(w) <O for all other ¢’s. It can be shown [15] that if
Re(w)=0, then Im(w)=0, that is to say the Mullins-
Sekerka instability is steady. So, when studying the bifur-
cation we can simply set ®=0 in (2.8). The resulting
equation relates the wave number g to the control param-
eters (e.g., ¥ and G). The associated curve (the neutral
curve) is shown in the diagram (g, V) in Fig. 1. The neu-
tral curve is a tongue: at small V the planar front bifur-
cates into a cellular state at ¥ =V, (see Fig. 1), and it bi-
furcates back to a planar front at V=V, (the origin of
this restabilization is that at high speed the capillary
length becomes comparable to the diffusion length). In
this paper we are mainly interested in the high velocity
regime, or equivalently in the large Péclet number limit
(defined by P=AV /D). For example, in Fig. 1, even at
V/D=30~=6V, the Péclet number inside the unstable
domain goes approximately from 1 to 11 (at the linearly
most dangerous line—the dashed line—it is on the order
of 2). These are large Péclet numbers. Since the cells in-
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FIG. 1. The tongue in the velocity-wave-number plane inside
which the planar front solution is unstable. V', is the lowest
value for the instability, while ¥, corresponds to the critical
value for restabilization. Parameters: d,=10"3, [;=0.5,
D=D'=1.0, and k=1.0. The dashed line indicates the posi-
tion of the most unstable mode.

teraction via the diffusion field decays exponentially with
the distance, the above Péclet numbers lead to localized
interactions. In Sec. IIT we shall give from scaling and
symmetry arguments the general form of the local equa-
tion. Although our treatment can be made more general
than what is presented below, we shall concentrate on the
situation close to the absolute stability limit. Thanks to
the large values of the Péclet number mentioned above,
we expect the asymptotic analysis to accurately describe
the dynamics even far away from the absolute stability
limit.

III. LOCAL EVOLUTION EQUATION

In this section we shall first give the general evolution
equation from symmetry and scaling arguments. The
starting point is the determination of the characteristic
temporal and spatial scales of the dynamics. This is done
by analyzing the dispersion relation (2.8). In order not to
complicate the explanation of the strategy unnecessarily,
we shall first consider the symmetric case, with a con-
stant miscibility gap [that is, we set v=1 and k=1 in Eq.
(2.8)]. The resulting dispersion relation then takes a
simpler form

o+2=2(1—1;'—dyg*)(1+q*+w)'? . 3.1

The bifurcation is defined by ©=0 and dw/dg =0 (it is
represented by the two extrema in Fig. 1, and we are in-
terested in the dynamics close to the upper maximum).
These two conditions provide

d 1/3
- | —do- (3.2)
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1/3

L —1. (3.3)

2:
2 4d}

These two relations determine the critical conditions for
the onset of instability, and the critical wave number.
Equation (3.3) is meaningful only if dy <1. In the limit
dy— 1 we have g.—0. We concentrate on the extreme
limit where d,— 1 (at that limit the Péclet number goes
to very large values). It is useful to introduce a small pa-
rameter

6'__%-(10 N (3.4)

which measures the distance from the threshold, but in

reality it can be thought of as the inverse of the Péclet

number. It follows from Eq. (3.3) that g, scales as
l=‘e+h.o.t. (3.5

c 3
while Eq. (3.2) provides

l{]=§62+h.o.t. s (3.6)
where h.o.t. stands for higher-order terms. Equation
(3.5) shows that the dynamics are described by long-
wavelength modes (in comparison to the diffusion length).
According to the scaling in Egs. (3.5) and (3.6), it is ap-
propriate to introduce quantities of order unity g and I
defined by ¢g=V'eg and I; '=I; '€’ Then using both
these definitions with that of €, we obtain from Eq. (2.8)
that w~e€, so that the dispersion relation takes the fol-
lowing form:

e[a°+4g°a+81; '+37*—87%]+h.o.t. =0, 3.7

where ®=w /€. In real space, Eq. (3.7) provides

€& rr —4Cxxr +38xxxx +8Cxx 817 '] +h.0.t.=0.

(3.8)

Since the Fourier variables § and @ are scaled by € '/?

and €~ !, we have accordingly introduced slow variables
X and T related to the original variables x and ¢ by

X=xVe, T=et. (3.9)

At small € the linear contribution in Eq. (3.8) becomes
small enough so that nonlinear terms become more and
more relevant. Now the question is which type of non-
linear terms are to enter the dynamics, without resorting
to calculation from the microscopic model. These terms
can be obtained from a combination of symmetry and
scaling arguments. Let us first consider quadratic non-
linearities. Because of the parity symmetry only even
derivatives in x should appear. On the other hand, the
only term that breaks the translational symmetry along
the z direction is the one associated with the thermal gra-
dient. Since it is linear in { it has already been accounted
for in the linear part of the equation [Eq. (3.8)]. There-
fore all the nonlinear terms to appear below are necessari-
ly derivatives of x. Let us begin with those terms where
only spatial derivatives are present. We have both quad-
ratic and cubic terms. Consider first the quadratic terms.
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(i) Quadratic nonlinearities
The most general quadratic term compatible with sym-
metries is of the form

Enbom>, ntm=4. (3.10)

The requirement that n +m =4 follows from the fact that
since x scales as € ~!/%; this is the only way to obtain €’ as
a contribution, and thus to balance the linear terms in
(3.8). Since linear terms are already accounted for, we
consider only the case where n, m >0. The only possibil-
ities for n=1 and m =3 (and vice versa) and n =2 and

m =2, so that the terms sought are

§X§XXX ’ ngcx *

(ii) Cubic nonlinearities
The most general cubic nonlinearity takes the form

E.mE b, ntmtp=4. (3.12)

(3.11)

Here we have only one distinguishable case (that respects
symmetry), namely m =1, n =1, and p =2 (and a circular
permutation which produces similar terms). Thus we
have as a cubic term of the form

§i gxx *

There are also terms where both derivatives of x and ¢
can be present which are allowed by both scaling and
symmetry. Consider separately quadratic and cubic
terms.

(i) Quadratic nonlinearities

S mbnps mtp+2n=4,

(3.13)

(3.14)
where we have made use of the fact that ¢ scales as €~ 1.
Requiring m+0 (nonlinearity) and n#0 (presence of a
time derivative), we find that n =1, and hence m +p =2.
So in total we have the following terms:

Finally there are fourth-order terms, compatible with the
scaling and the parity symmetry. It can easily be checked
that there is one term, which is

&r . (3.18)

It is clear that higher-order nonlinearities produce terms
with €" with n > 2, and therefore should not be retained.
The full nonlinear equation is the collection of the above
terms [Egs. (3.11), (3.13), (3.15), (3.17), and (3.18)], added
to the linear equation (3.8), which we shall write by using
the slow variable X and T:

gTT _4§XXT + 3§xxxx + 8§XX + 8I_T_ !
=a,tkx taXxCxxx +as§§r§xx tabréxx

+astybxr tagibr +a7§}( s (3.19)

where the a,’s are real coefficients. In order to determine
these coefficients we need to calculate them from the mi-
croscopic model under consideration, while the general
form of Eq. (3.19) follows from symmetry and scaling ar-
guments [16].

In reality, we have not yet exploited all the symmetries.
The only symmetries which we have hitherto evoked are
the reflection symmetry and translational symmetries.
There is, however, another symmetry group which needs
to be considered: the full rotational symmetry. This sym-
metry is more manifest when we use intrinsic coordi-
nates. Indeed, besides the gauge-invariant formulation of
the evolution of the geometry (i.e., the curvature evolu-
tion) the normal velocity (which is the physical com-
ponent of the front velocity) contains the curvature and
its covariant derivatives only, due to rotational symme-
try. It can be shown [16] that when exploiting this sym-
metry, the coefficients =0 and a;=0 in Eq. (3.19).

IV. EVOLUTION EQUATION
IN THE TWO-SIDED MODEL

There have been derivations of the evolution equation
in the two limits of the one-sided [17] and symmetric
models [18]. The strategy for the deviation in the two-
sided model is similar [19], and we shall directly give the
result and comment upon it briefly,

Exxbi » Exbu =33, (3.15)

(i) Cubic nonlinearities
The most general term is of the form

§ b mEp, mTnt2p=4. (3.16)
The only possibility is m =n=p =1,

£36. - (3.17)

1
1 1 -

Srr— |2+ v |Gxxrt 14+ +v2 |Exxxx +8kExx +8kIT!

2
=26 78xx +2(8%) 7 —2(8% )xx — 2VExExxx — ;(gxxgx )y —2[(Ex )y -

A simple inspection of this equation shows that only the
terms that were derived from symmetry and scaling [Eq.
(3.19)] are present (one may need to perform some
differentiations in the above equation to check this point).

The above equation reduces to the one for the one-

(4.1)

sided model [17] for v=0 and to the symmetric one with
a constant miscibility gap for v=1 and k=1 [18]. Note
that for the stationary problem, the one-sided model
equation obviously possesses a first integral, and that
therefore the mean front position is zero, while the mean
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position in the two-sided case is positive. Both are conse-
quences of mass conservation on the global scale.

V. FRONT DYNAMICS FOR LIQUID CRYSTALS

The symmetric model with a constant miscibility gap is
appropriate for the liquid-crystal system. We shall
characterize the steady pattern below, then proceed to a
search for secondary instabilities.

A. Steady-state and symmetric solutions

In the limit of symmetric diffusion with a constant mis-
cibility gap (v=1,k =1), the steady-state version of Eq.
(4.1) takes the form

38oxxxx +88oxx +8I7 'S,

= —4(§(2)X )xx ‘2(§3x )x+2§(2)XX . 5.

We consider periodic solutions with a wavelength A.
Moreover, we restrict ourselves to symmetric solutions.
Equation (5.1) is a nonlinear equation for the unknown
$o» and is of fourth order in space, thus requiring four
boundary conditions. These are obtained from the re-
quirement that {,y =0 and {yxxy =0 at the two ends of
the interval, which we take as [0, A/2]. This means that
Eq. (5.1) admits, in principle, arbitrary solutions
parametrized by the wavelength A. We have solved this
equation by means of a shooting method. Our results are
summarized in Fig. 2. in the plane (/5 !, g) where the
solid line represents the neutral curve for the stability of
the plane front solution. Solutions exist inside the
domain where the plane front solution is unstable. Their
range of existence is delimited by the triangles. They ex-
tend up to the neutral curve for large wave number, and

07 | 1 |
0.6 - -

0.5 -

0.3 H
0.2

0.1 A

T L ihidad
T

0.0
0.0 0.5 1.0 1.5

FIG. 2. The triangles delimit the region of existence of steady
and symmetric solutions. Note that for small enough ¢ (approx-
imately when the mode 2g becomes neutral, which happens at
the dotted line) the g family ceases to exist, bifurcating into a 2¢
family.
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FIG. 3. An example of the stability spectrum following from
the Floquet-Bloch analysis. Here /7 '=0.28 and ¢=0.9. There
is an oscillatory instability at Q =g /2 (see text, Sec. V D).

cease to exist for small-wave-number solutions with g as a
basic wave number, whereas solutions with a basic wave
number 2g merge. In other words, the basic solution un-
dergoes tip splitting. This phenomenon is associated, as
we shall see in Sec. VII, with a strong resonance between
the first and second harmonics.

The determination of steady-state solutions is a first
step in the analysis of any pattern-forming system. The
next natural step is to investigate their stability. The sta-
bility analysis has been presented elsewhere [12,19]. We
just give the results here, based on a Floquet-Bloch
analysis of the stability matrix. Figure 3 gives an exam-
ple for the real part of this spectrum. Note that there is
(always) a mode with a zero eigenvalue corresponding to
translations of the pattern along the x direction. All pat-
terns are only marginally stable with respect to that
mode.

0.7

0.6

0.5 4

0.4

0.3 o

0.2

nt4
TR b by gyt

0.1+

0.0 T ' T T
0.0 0.5 1.0 1.5

FIG. 4. Stability diagram in the plane /7' vs g. Full line: the
neutral curve; triangles: the limit of existence of steady solu-
tions; crosses: the Eckhaus boundary; (open) diamonds: the
boundary to the left of which broken-parity solutions appear;
and (filled) squares: the boundary below which the VB mode ap-
pears.
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B. Eckhaus instability

The first and, by now, classical instability is the Eck-
haus instability. This is the most generic instability
which occurs in many systems. The reason is traced back
to symmetry. Indeed for an extended system there is a
Goldstone mode, to which the pattern is indifferent, cor-
responding to a constant shift of the pattern along X.
The phase is a conjugate variable to the Goldstone mode,
and is therefore a dangerous mode. We can proceed to
the investigation of phase instability by using the phase
dynamics techniques [20,21]. We shall not follow this
spirit here, but rather phase instability will follow from
our stability analysis. The idea is to vary g within the
domain of existence of steady solutions until we find a
first positive eigenvalue. We find a wave-number domain
(delimited by the crosses in Fig. 4) where one eigenvalue
goes from negative to positive when crossing that domain
outward. All the other branches have a negative real
part. The most dangerous branch is represented in Fig. 5
below and above the instability threshold. This instabili-
ty appears first at the origin of the Brillouin zone. It is
purely real when Re(o)>0, and it behaves like o ~Q? at
small Q. This is a purely diffusive instability. The
analysis of the associated eigenmode shows indeed that
this is a phase mode. The Eckhaus instability is of long-
wavelength type. Figure 6 shows the dynamical solution
(the numerical method is described in the companion pa-
per) of the full Eq. (4.1). There we show the manifesta-
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FIG. 5. The spectrum associated with the Eckhaus instabili-
ty. Only the two most dangerous eigenvalues are shown. Top
(solid lines): an unstable case (/7 '=0.6 and ¢=1.0); bottom
(dashed lines): a stable situation (/7 '=0.6 and ¢=1.1). The
imaginary part of the least stable mode is zero in both cases.

tion of the Eckhaus instability. We first force the wave
number inside the Eckhaus-unstable domain (outside the
crosses in Fig. 4) and take the steady solution as an initial
structure. In order to allow for the manifestation of such
an instability, the computational box should be taken
large enough (more than five basic wavelengths). The
figure shows the transient where the instability appears as
a long-wavelength modulation of the periodicity, which
leads (in the present case) to the creation of an additional
cell; the subsequent adjustment operates via a phase
diffusion process. The pattern has increased its wave
number; the final wave-number is inside the Eckhaus-
stable region.

C. Parity breaking

For values of I ! not too far from the critical one, the
only instability is the Eckhaus one. When I7! is de-
creased the second harmonic becomes more and more
competitive, especially in the small-wave-number range.
There a new instability appears exactly at the center of
the Brillouin zone (Q=0). The diamonds in Fig. 4
represent the boundary to the left of which this instability
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FIG. 6. Dynamical manifestation of the Eckhaus instability.
In this and all following space-time portraits, the y axis is a hy-
brid space-time coordinate. Unless stated otherwise, the units
correspond to the nondimensional space and time units defined
by the scalings explained in the text. The x axis corresponds to
the spatial extension of the pattern. Its unit is the wavelength of
the basic symmetric solution. In this particular example, the
height of the cells has been multiplied by four for better visibili-
ty. Here, I7'=0.6 and ¢ =1.0. The initial wave number is in-
side the Eckhaus-unstable band. The front undergoes tip split-
ting before it reaches a final wave number ¢=1.1 inside the
Eckhaus-stable band.
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ty. This instability is at Q=0. Shown are the two eigenvalues
with the largest real parts. Top (solid lines): unstable case
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FIG. 8. The spatiotemporal portrait of the BP state, for
17 '=0.28, ¢ =0.86. Because this is a situation very close to the
stability threshold, the cells are almost symmetric and the drift
velocity is small. For a faster drifting pattern, see Fig. 12.
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FIG. 9. The spectrum which corresponds to the VB instabil-
ity. Top: the real part of the first two eigenvalues; bottom: the
imaginary part. This instability occurs at Q =gq /2, and is oscil-
latory.

occurs, while Fig. 7 shows the spectra below and above
the instability. The analysis of the associated eigenmode
shows that this instability is led by antisymmetric fluctua-
tions. The numerical solution of the full Eq. (4.1) above
the instability threshold shows the evolution of the pat-
tern after transients have decayed (Fig. 8). The pattern is

T T I I T
0.0 0.5 1.0 1.5 2.0

X/N

FIG. 10. The spatiotemporal portrait for the VB mode,
where /7 '=0.285 and ¢ =0.9.
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asymmetric with respect to the growth axis, and travels
sideways at a constant speed. In Sec. VII we discuss the
analytic result for parity-breaking.

D. Vacillating breathing

We have discovered another instability. This appears
below the curve given by the solid squares in Fig. 4. This
instability occurs exactly at the boundary of the Brillouin
zone (Q/g=1), and is oscillatory. Figure 9 shows the
real and imaginary parts of the spectrum. This is a
period-doubling instability very similar to the Peierls in-
stability in one-dimensional conductors. The main
difference is the oscillatory behavior, related to the
nonadjoint character of the linear operator in the present
case. In Sec. VII we shall return to an analytical analysis
of this instability. The full numerical solution above the
instability threshold is shown in Fig. 10. There we see
that each cell oscillates in phase opposition to its neigh-

CXT) + T

CX,T) + T

I T T I T
00 05 10 15 20

(b) X/N

FIG. 11. A pattern showing the development of a cusp
singularity (a) in the one-sided model (v=0), which is cured
after allowance of a small amount of diffusion (v=1072) in the
solid phase (b). Parameters: /7 '=0.5and ¢=1.2.

bors (vacillation), while the top of each cell vibrates in a
breathing fashion.

VI. FRONT DYNAMICS
IN ORDINARY MATERIALS

The results presented in Sec. V refer to the liquid-
crystal system, where mass diffusion is quasisymmetric.
The question naturally arises of whether or not the above
phenomena would persist in more general situations. In
ordinary materials the mass diffusion coefficient in the
solid phase is several orders of magnitude smaller than in
the liquid phase. In the extreme limit of the one-sided
model we found that at a large enough distance from the
instability threshold, the interface develops cusp singular-
ities at finite time (Fig. 11), and no steady solution is
found. However, if a small amount of mass diffusion is
allowed (approximately v=0.01) in the solid phase, this
problem is cured. That is to say that stationary solutions
are reached. Here we find the same scenarios as in
liquid-crystal systems. Therefore we shall not linger on
details, but rather directly give the overall picture of our
findings. Figure 12 shows the broken-parity state, and
Fig. 13 the vacillating-breathing mode. The main
difference in comparison with the liquid-crystal system
(Fig. 10) is the larger depth of the grooves between the
cells, which makes the picture more impressive by em-
phasizing the vacillating motion. Although this cannot
be inferred from the picture, one expects that in a system
rescaled to physical variables the vacillating-breathing
motion is much less pronounced in the one-sided case
than in liquid-crystal systems. The reason is that the VB
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FIG. 12. The spatiotemporal portrait of a BP state in the
one-sided model (v=0). Parameters: 7 !=0.55 and ¢ =1.0.
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FIG. 13. The spatiotemporal portrait of the VB state in the
one-sided model. Parameters: /7 '=0.52 and ¢ =1.2.

mode implies an oscillatory melting-recrystallization pro-
cess. In the quasi-one-sided model, the melting process is
drastically reduced, since mass diffuses in a much slower
manner in the solid phase, a fact which acts against the
amplification of this mode. This is the main reason that
this type of mode was first discovered in liquid crystals,
but now its experimental evidence in ordinary materials
is beyond any doubt.

VII. ANALYTICAL ANALYSIS
OF SECONDARY INSTABILITIES

We present our analytical understanding of secondary
instabilities. The Eckhaus instability can be analyzed in
the context of phase dynamics [21], and we shall not dis-
cuss it here. The parity-breaking and period-halving bi-
furcations are analyzed close to the codimension-two bi-
furcation, where the first and second harmonics are both
quasineutral. This will be sufficient to understand the
basic ingredients. The analysis of the vacillating-
breathing mode is based on an analogy with the problem
of quasi-free-electrons in a crystal.

A. Parity-breaking and period-halving bifurcations

This analysis is based on a model of two-mode interac-
tions. This type of treatment is analogous to the one first
presented by Malomed and Tribelsky [22]. Since our
equations contain new terms, it is worthwhile to repeat
briefly the analysis. Close to the primary bifurcation (i.e.,
the bifurcation from the planar to the cellular state) only
the first harmonic is active. As /5 ! decreases, the second
harmonic becomes more and more important. Figure 14
shows the region where the first and second harmonics
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FIG. 14. The neutral curves w(q)=0 and w(2¢)=0 in the
plane /7! vs g. The hatched region corresponds to the situation
where both the ¢ and 2¢ harmonics are unstable. The intersec-
tion point is the codimension-two point where the two harmon-
ics bifurcate simultaneously.

are both unstable (the hatched region), and the point of
codimension two where they simultaneously bifurcate.
Our analysis makes sense if the distance from the
codimension-two point is small enough, and we shall see
below that the conclusions we are going to draw are qual-
itatively accurate even far away from the codimension-
two point.

We restrict ourselves, without loss of generality, to the
liquid-crystal system. The starting point is to expand
§(X,T) in Eq. (4.1) in Fourier series,

EX,T)=Ao(T)+ S [A4,(De ™ +cc.]. (1.1

n=1

Inserting this expression into Eq. (4.1), we obtain a gen-
eral equation for 4,:

L(ng)A,(t)
=3 {b(n—m,m)qg*4, _, A,

tecln _mvm)q4An~m Ay}

+3 {din—m—p,m,p)g*4,_,, _,A4,4,}, (12)
m,p

with
d? d -

L(q =?+4qzz +(3¢*—8g%+817") .
b, ¢, and d are polynomials. Close to a critical point the
amplitude scales as the square root with the distance
from the threshold. This means that the cubic term bal-
ances the linear one, and that therefore our expansion
should be made up to the third order in amplitude. We
are interested in a regime where the first and second har-
monics are competitive, while higher harmonics are
damped and therefore slaved to these others. We may
thus naively be tempted to write Eq. (7.2) for n =1 and 2

(7.3)
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up to third order, where one would keep only terms con-
taining 4, and A4,. This is, however, not legitimate.
Indeed, although higher harmonics are damped they will
react on the first two harmonics and thus renormalize the
coefficients of the governing equations. Indeed, it can
easily be seen from (7.2) that in the equation for 4, we
have terms like 45 4, (the form of this term is in fact a
consequence of translational invariance). On the other
hand, the slaving of A4; results in terms like 4;~ 4, 4,
(here again translational invariance may be invoked), so
that 43 A;~|| 4,||*4,, a term which should be retained.
A similar reasoning holds for the equation of 4,, where
quadratic terms containing 4, must be retained. Having
taken care of these points, which are necessary to have a
consistent expansion, we are in a position to write the
coupled equations. They take the form

L(QA,=a, At A,+B,4,|4,*+7,4,| 4,]
+8,AA,+A A A, A}
+p A Ay A3 +vi 4] 4,
+p,A,| Ay +0,4, 4,43, (7.4)
L(2g)A,=a, A3 +B, A, A, |*+y,4,| 4,|*+8,4, 4,
+A, 4345ty Ay Ay +vy A, A,
+§2A1A"{'A2+02A1A1'A2

+p, A, A|1*+0o,4, 41 4, . (1.5)

The coefficients appearing in Egs. (7.4) and (7.5) are relat-
ed to the control parameter /7 ! and to the wave number
g, and are listed in Appendix A. We will find it con-
venient to introduce a phase and an amplitude
A4, =a1e' 'and 4, =a2e'¢z. We can in principle analyze
the full equations. However, we shall first simplify them.
Indeed, if the distance from the codimension-two point is
small enough, this means that the growth rates Q(g) and
Q(2q) are small. Therefore terms like 4, are small as
compared to A,. Similarly, since A} 4,~Q A% A,, and
Q) scales as the square of an amplitude, we shall drop
these terms. In this context, the equations for the phase
and amplitudes simplify greatly. The result is

4g%a,=Q(q)a, +a,a,a,cos(x)+Bal +y,a,a3, (7.6
4g°¢,=—a,a,a,sin(x) , (7.7)
16%a, =0 (2q)a, +a,alcos(x)+B,a3+v,aa, , (1.8)
16%a,d,=a,a3sin(y) , (7.9)

where Y=2¢,—¢,. A simple manipulation of (7.7) and
(7.9) yields an equation for y:

a, a

Y = sin(y) . (7.10)
X 8aa? X

B 2q%a,

It is seen that if (a,,a,,Y) are known, then ¢, and ¢, will
also be known. In other words, the number of degrees of
freedom is three (as long as the second temporal deriva-
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tives remain small). This follows from translational in-
variance since one phase is arbitrary.

B. Pure and mixed modes

We first characterize the steady-state solutions of Egs.
(7.11) and (7.9). The steady version takes the form

Q(q)a,ta,a,a,+Bal+vy,a,a2=0, (7.11)
Q(2q)a,ta,a?+Ba3+vy,a2a,=0, (7.12)
sin(y)=0 . (7.13)

The plus sign corresponds to y=0, and the minus to
x=m. This set admits two types of solutions.

(i) Pure mode solutions P* and P~. This corresponds
to the case where a, =0, and

. 0029
(12_ Bz .

This solution exists only if the right-hand side of Eq.
(7.14) is positive. Figure 15 shows this solution for a
given value of /7!. Note that the modes P* (y=1) and
P~ (x=0) are identical.

(ii) Mixed mode solutions M+ and M ~. This solution
corresponds to the situation where a;70. Contrary to
the previous case, we should distinguish here between the
two cases y=m (M ") and y=0 (M ™). This solution is
characterized by

(7.14)

aa3+pai+ya,+6=0, (7.15)
where
a=BiB,—v1v2, B=Flayy,+tayy)), (7.16)
Y=Q(29)B,—a,0,—Qq)y, , 6=FQQ)a,, (7.17)

where the upper and lower signs refer to Yy =0 and 7, re-
spectively. The value of a, can be obtained from (7.11).
Figure 15 shows the branches M+ and M ~. One sees
there that at large enough g there is only the M * branch.

x10 !

az

FIG. 15. The evolution of the mixed mode toward a series of
instabilities (see text) in the ¢ —a, plane for fixed /7 !. Solid
lines correspond to stable states (within the two-mode approxi-
mation), dotted lines to unstable ones. Note that the BP mode
is stable close to the bifurcation point in this approximation,
while it is unstable there in reality.
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By decreasing g the second harmonic becomes competi-
tive. The M ™ solution ceases to exist, while the pure
mode branch bifurcates. This is the period-halving bifur-
cation. Note that the M * branch corresponds to the sit-
uation where the second harmonic acts against the first
one, while for M~ the second harmonic reinforces the
first one.

C. Parity breaking

In the two-mode interaction picture, the front profile
can be written as

£=2a,cos(gX +¢,)+2a,cos(x)cos[2(gX + ¢,)]

+2a,sin(y)sin[2(gX +¢,)] . (7.18)

One sees thus that a nonzero value of y induces an an-
tisymmetric component in the front profile. We can
think of this quantity as an order parameter for parity
breaking. The question now is whether Eq. (7.13)
possesses a nontrivial fixed point. This occurs if the term
multiplying sin(y) vanishes for a particular value of y0.
This happens for

a§=-871a§ ) (7.19)
A necessary condition is that a,a, <0. This is clearly the
case (see the definition of the coefficients in Appendix A).
The amplitudes a, and a, are functions of y [see Egs.
(7.11) and (7.12)], so that Eq. (7.19) is an implicit equation
for the unknown Y. It is a simple matter to obtain from
the set (7.11) and (7.12) a closed expression for a, (and
a,), which upon substitution in (7.19) provides a closed
expression for the order parameter. The result is

J
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al=[a;Q2¢)—ca,g)]/A , (7.20)
cos(x)=[(cB;+¥)2q)—(B,+cy,)g)]/(a,A),
(7.21)
where we have introduced the abbreviations
)
c=~a , A=cay(cpi+y)—a(Bytcy,) . (7.22)

The existence of the broken-parity (BP) state is subject to
the conditions a3 >0 and |[cos(x)|| < 1. Figure 15 shows
the BP branch. Note that this mode branches off the M *
one. It can also be checked that at this point the M *
mode loses its stability. In summary the PB bifurcation
results from the loss of stability of the mixed mode and
occurs slightly before the period-halving bifurcation.

D. The VB instability

As described in Sec. V the model equation supports a
VB instability. In this section we develop an analytical
analysis which allows to shed light on this phenomenon.
This analysis is inspired by the problem of a quasifree
electron in a crystal. It will be recognized below that al-
though our analysis will be concerned with Eq. (4.1), the
spirit will perfectly operate in more general situations.

Let o, designate the steady-state solution param-
etrized by the wave vector g, and denote by §,(X,T) an
arbitrary but small deviation about the steady solution.
For the sake of simplicity we concentrate on the situation
where mass diffusion is symmetric, and where the misci-
bility gap is constant (i.e., v=1 and k=1). Linearizing
Eq. (4.1), we obtain

Sirr —4C1xxr 38 1xxxx T 88 1xx 817 161 =480, Cixr +280gxxS17 — 128 00xx S 1xx —650,x 6 1xx

- 8§0qX§1xXX - 8§0qXXX§1X - 12§0qXX§0qX§1X .

This is a linear equation with periodic coefficients due to
the periodicity of {p,. Thus it is analogous to the
Schrédinger equation with a periodic potential, familiar
from the problem of an electron in a crystal. As is the
case with the Schrodinger equation, there is in general no
exact solution. However, if our wish is to understand the
basic ingredient of some features, a perturbation theory
may be sufficient. For example, in order to understand
the appearance of energy-band structures, it is instructive
to make use of a quasi-free-electron approximation. In
the present case the potential analogs are the derivatives
of {,. Since the wave number of interest is of order one,
the amplitude of &, is (approximately) the amplitude of
the potential. Recall that the cellular structure takes
place at a value /7 '=I7'=2, and at that point the am-
plitude of deformation increases continuously from zero.
The full numerical analysis has shown that the VB insta-
bility takes place in a regime where only the first harmon-

(7.23)

ic is active. Therefore it is reasonable to assume that the
steady solution is composed of the first harmonic only.
On the other hand a simple analysis of the bifurcation
equations treated in Sec. VII C shows that a; ~0.2-0.3,
close enough to the birth of the VB mode. Since the lead-
ing coefficient not multiplying §, in Eq. (7.23) is of order
unity, it is legitimate to treat, {, as a perturbation in Eq.
(7.23), on a first level.

Since Eq. (7.23) is autonomous with respect to time,
the eigenfunction &(X, T)=e“TE(X), where o is the ei-
genvalue (it plays a similar role to the energy in quantum
mechanics). The form of eigenfunction &, follows from
the Floquet-Bloch theorem, and we shall write it as
EX)=-- +b_e"Q X4 ppei@Xtpel@raXy ...

(7.24)

We can think of b, as the amplitude of the incident wave
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function, b_, that of the reflected one (the analog of the
Bragg reflection), and b, that of the transmitted wave
function. In the bare problem ({,=0) we can determine
a zeroth-order energy given by

0, =—2Q+ng?+{(Q+nq)*+8(Q+nq)*—8I7'}!?,
(7.25)

where n is integer, and where we omit the other solution
with a minus sign in front of the square root, since it is a
stable Mullins-Sekerka branch. If we consider only the
first Brillouin zone (i.e., 0 < Q /q <1) we distinguish there
between three intersections of branches w,, one at Q =0,
a second one at Q /g =1, and a third one with Q /g close
to 1. In the representation we have chosen, the three in-
tersections are represented by the equations 0,=w_,,
wy=w_1, and wy=w,, respectively. In the problem of a
quasifree electron, only the intersection between the spec-
trum of the incident wave and the reflected one is crucial
(a part of the reason is that the other intersections are as-
sociated with highly excited states, while this is not the
case here because of the topology of the bare energy
which makes the intersection between w, and w_,, and
@y and ®;, both close to the Q axis, and therefore both
potentially dangerous).

It is clear that the most relevant contribution of the
spectrum where the waves are coupled [via the terms pro-
portional to §; in Eq. (7.23)] comes from the resonance
due to the energy degeneracy. Let us treat each reso-
nance separately.

1. The Bragg-like resonance

The standard resonance is the one which occurs for the
problem of an electron in a crystal. That is, it corre-
sponds to the resonance between the incident wave
(whose amplitude is b;) and the reflected one (whose am-
plitude is b_,; it is the analog of the Bragg reflection).
Close to the intersection point, the total wave function is
a linear combination of the two functions:

EX)=b_ e/ Q= 9X4p oi0X (7.26)

o=uy(Q)+2ila,|

l{g*—[g(g +2Q)wy(Q)+(Q +¢)*—Q
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Inserting this into Eq. (7.23), we obtain a set of two linear
and homogeneous equations for the coefficients b_,; and
b,. The condition for the existence of a nontrivial solu-
tion yields the dispersion relation. The detailed calcula-
tion is given in Appendix B. At the intersection point
Q/q =1, the dispersion relation provides, to leading or-
der in the amplitude a,

=t la,] ¢
g 2 +8(g /2081 2T

(7.27)

Note that the radicand of the denominator in Eq. (7.27) is
positive for growing states [Re(wy)>0]. This result is
very similar to the one encountered for an electron in a
crystal: the effect of the underlying periodic solution re-
sults in the creation of an energy gap. The creation of an
energy gap simply shows that extended solutions are
those which correspond to w given by (7.27).

The most interesting result, which has no analog in the
problem of an electron in a crystal, is the one which
arises in the analysis below.

2. The VB resonance

In quantum mechanics only resonances with energy-
gap creations are permissible. The deep reason is that the
energy is an observable, and consequently the associated
operator, the Hamiltonian, is self-adjoint. There is no
such restriction in the problem we are studying, and
operators do not necessarily have to be self-adjoint. In
particular, the linear operator [Eq. (7.23)] under con-
sideration is obviously not self-adjoint.

There is in the present case a the creation of a wave-
vector gap instead of an energy gap [23]. A corollary of
this is that energy becomes complex. This feature is the
reason for the birth of the VB mode. The calculation is
similar to the one presented above. The only difference
now is to replace b_, by b, (and the bare spectrum ac-
cordingly). The calculation presented in Appendix B
shows that

4]2} |1/2

[[0o(@)—ao(@)[wy(Q)—0(Q +¢)]|'"?

This result shows that the coupling of the two branches
Q +¢q and Q leads to oscillatory states. This result has no
analog in quantum mechanics, where no complex eigen-
values are permissible. This analysis shows the origin of
VB modes.

At this stage we have not yet found which value of Q is
the most dangerous. This is what we would like to ac-
complish now. For that purpose we have analyzed Eq.
(7.28) in the parameter space (I; !,¢) and looked for the
boundary where Re(w) crosses zero. Figure 16 show this
boundary below which Re(w)>0 and along which

(7.28)

Im(w)7#0. The solid line represents the case where the
most dangerous value of Q is 0.5 (the true VB state), and
where there is a good agreement with the full calculation
presented in Sec. V D. In particular, for /7 '=0.3 and
q=0.9, here we find Im(w)=0. 86, while in the full calcu-
lation Im(w)==0.9. The dotted lines represent the case
where Q is irrational. In the full calculation presented in
Sec. V D we did not encounter the latter situation. This
is not surprising. Indeed, our analytic calculation is not
expected to be accurate (i) when we approach the line
where the second harmonic becomes neutral, and it
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would be necessary to include it; and (ii) when we consid-
er small values of /!, and |a,| becomes larger and
larger, so that the validity of perturbation analysis breaks
down.

VIII. BEYOND SECONDARY INSTABILITIES

The secondary instabilities are the beginning of a route
toward the formation of more complex and richer pat-
terns. The most important feature is that the VB mode is
itself susceptible to parity breaking, before the dynamics
enter a chaotic regime. On the other hand, the BP mode
may undergo an oscillatory instability, depending on the
path in parameter space. For decreasing wave number at
a constant value of /7', this leads to a permanent hop-
ping of the pattern between the g and 2g modes, which is
a prelude to another type of chaos [24]. These transitions
to chaos are a subject by themselves, which is presented
in the companion paper. Below we discuss some other
dynamic features.

A. Anomalous cells

The parity-breaking bifurcation is a pitchfork bifurca-
tion: the right- and left-traveling states are both solutions
to the growth equations. Due to this degeneracy, we can
construct other solutions, as in domain-wall structures.
One of the solutions is that where the front consists of al-
ternating leftlike and rightlike cells. There is a priori no
reason that the two types of cells have the same lateral
width. We have not yet addressed such a general ques-
tion. The case we have dealt with so far is the one where
the pattern consists of pairs of asymmetric cells with one
being the mirror image of its two neighbors. In this case
the pattern does not drift. We refer to this growth mode
as the anomalous state. We have shown the existence of
this state in eutectic systems [25], both numerically and
analytically.

In the present model, both steady-state and dynamical

FIG. 17. Anomalous states. An example for the symmetric
model —I71=0.28, ¢=0.8, and v=1.0.

considerations reveal the existence of such a solution
(Fig. 17) in both symmetric and one-sided limits. This
solution typically exists in a region of parameter space,
where the BP solution is also present. This type of solu-
tion was observed in many systems, but the most spectac-
ular observation is that of Jamgotchian et al. [26] during
directional growth of succinonitrile.

B. Long-wavelength instabilities of the BP state

In the context of the phenomenological model of Coul-
let, Goldstein, and Gunaratne [9], Fauve, Douady, and
Thual [27] pointed out that the broken-parity state suffers
a long-wavelength oscillatory instability near its bifurca-
tion point. It is therefore natural to ask whether such an
instability is present within a microscopic model, and if
so, what would be the subsequent dynamics. To study
this question we have performed a full linear stability
analysis on Eq. (4.1), after having made the transforma-
tion into the moving frame. The strategy is then similar
to that used in Sec. V: we first investigate a traveling
solution characterized by its drift velocity, and then use a
systematic Floquet-Bloch theory. We find that, at and
above their birth point (from the initially symmetric
state), the broken-parity states indeed suffer the above-
mentioned instability. We have compared our results,
concerning the dependence of the real and imaginary
parts on the wave number Q, with those following from
the phenomenology presented by Fauve, Douady, and
Thual [28]. From amplitude equations, for the growth
rate they obtain

o?+ (20 —iQgv +bQHw—iQfv +aQ*=0 . (8.1)
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FIG. 18. Comparison of the real and imaginary parts of the
eigenvalues for the stability of the BP state. Solid and dashed
lines: real and imaginary parts obtained in the full calculation
(I7'=0.28, ¢=0.8, and drift velocity » =0.388); dash-dotted
and dotted lines: the same for the phenomenological model [Eq.
(8.1)], where the parameters were taken to be v =0.388, a =2.0,
b=g=1.0,and f=1.7.

Herein a, b, f, and g are phenomenological coefficients,
and a and b are assumed to be positive. v is the lateral
drift velocity. The most important coefficient is f, which
multiplies the gradient of the phase of the pattern in the
amplitude equations and destabilizes the drifting pattern
independent of its sign, for not too large drift velocity. In
Fig. 18, we compare the solution to Eq. (8.1) with that of

25 — -
20- -
Sl
+ 154 u
a2
~
—~
E‘—-
> 10 - i
A
A
S -
0+ -
| I | T | I
0 2 4 6 8 10

X/

FIG. 19. Evolution of an initially asymmetric state revealing
a long-wave-length instability. Here we represent only the per-
manent regime, where, by following the cells that almost split,
we can see two light bands along which we can recognize
features which bear resemblance to the solitarylike mode ob-
served in experiments on liquid crystals [3]. Here the amplitude
of the cells has been reduced by a factor 0.5 for a clearer pic-
ture.
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our exact stability analysis of a BP mode not too far from
its bifurcation point. We obtain good agreement between
the two treatments for model parameters a —g on the or-
der of 1 (see the figure for details).

An important consequence of this instability is that the
BP state is probably not observable as an extended state
(except in eutectics [29,30], where the slowness of phase
diffusion inhibits the instability). It should undergo a
fragmentation process. The different scenarios that we
have encountered cannot be described here, but we have
selected some typical behaviors, in the present paper and
its companion. For ¢=0.85 and /7 !=0.26 (with v=1
and k=1), the evolution of the initially extended BP
state is shown in Fig. 19 (the computational box contains
initially ten cells). After a complex mechanism involving
tip splitting and cell creation, an oscillatory structure
emerges, with an average wave number g =1.02, that
behaves relatively regularly (there is some irregularity:
every once in a while sources appear, from which two lo-
calized waves are emitted in opposite directions). Longer
simulations show that this pattern retains it character. A
noticeable point is the presence of a global drift of the en-
velope of the pattern, while the single cells remain rough-
ly stationary. There are two light bands in the pattern of
Fig. 19, consisting of features which bear some resem-
blance to the solitary modes discovered in liquid-crystal
experiments by Simon, Bechhoefer, and Libchaber [3].
An even more regular structure, where these features are
more strongly pronounced, can be found by starting from
q=0.9 (corresponding to an unstable symmetric state)
and ending at ¢ =1.08. For details, see Ref. [19].

IX. CONCLUSION

This paper has dealt with a number of features, most of
them pertaining to secondary instabilities of a crystalliza-
tion front. The focus was on the large speed regime (by
large we mean a diffusion length comparable to the chem-
ical capillary length) which is more tractable than the
usual full boundary integral equation. This has allowed
us to capture in an easy way (and therefore enlightening)
the essential physical concepts of the various instabilities.
We did not notice any relevance of the values of the ma-
terial parameters to any one of the features investigated
here. We can thus ascertain the general relevance of the
present study to a wide range of systems, ranging from
metals to liquid crystals.

It is fascinating to see that a simple system, such as a
one-dimensional front whose motion is limited by
diffusion, exhibits a myriad of behaviors. We believe,
however, that this paper and its companion are far from
exhausting all the features.

Most of the instabilities reported here have been ob-
served on a variety of fronts [3—6), as well as in many hy-
drodynamical systems [7,8]. There is no hint, however,
that the equation on which the present study was per-
formed should be generic in the sense that it can apply to
the diverse list of physical systems. A recent study [31]
has shown that the stabilized Kuramoto-Sivashinsky
(SKS) equation is generic. It has been shown that this
equation exhibits all the features reported here, plus oth-
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ers which are not exhibited by the present equation [31].
The SKS equation, which is simpler than the one encoun-
tered in directional growth, reinforces our belief that the
variety of patterns in physical and chemical systems, and
so on, which at first sight seem extremely diverse, are
most likely a disguised form of only a few prototypes. It
will be an important task for future investigations to
recognize, at least in the hydrodynamic limit, the
relevant nonlinearities in the equation on which the
present study was performed, and possibly to elucidate
the question of whether this equation enters a universali-
ty class or not.
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APPENDIX A: LIST OF THE COEFFICIENTS
APPEARING IN THE COUPLED EQUATIONS

In this appendix, we give expressions for the
coefficients involved in the coupled equations (7.4) and
(7.5). They are given by

a, =329, a,=—14q*, (A1)
224X 512q3%
=6q* —9ggt+=2222 A2
Bi=6q*, B,=96q 0(4q) (A2)
128 X19248 128 X1324%
=48g¢+ 22229, _ygggty 202
v1=48¢ Q(39) L Q(39)

(A3)
J

8,=6¢%, 8,=—6q°, (A4)
=M A= (A5)
oa3g 0 ™ 0,
6 6
#1:10X192g = 24X512¢g ’ (A6)
Q(3q) 0(4q)
_ 16X1924° _ 10X132¢°
Vl- ’ VZ— > (A7)
Q(3q) Q(3q)
4 4
p1=6;;(gog ’p2:_6><16g , (AS)
q) Q(3q)
4 4
UIZM , 022__6.2(_124_ , (A9)
0(3q) O(3q)
and
__ 6X12845 __ 16x132¢° AL
%2 03g 2 Q3q) (A10)

APPENDIX B: BRAGG-LIKE AND VB RESONANCE

In this appendix, we present detailed calculation of the
eigenvalues for the Bragg-like and VB resonances.

Let us first examine the Bragg-like resonance,
which corresponds to the situation where wy(Q)
=w_(Q)=wy(Q—¢q)]. The eigenstate close to this in-
tersection is a superposition of two wave functions:

Elx)=b_,e" @ 9%+ pyei0 (B1)

Inserting this into (4.1), we obtain the following set of
equations for b_ and b:

—{[—49(Q—¢9)—2¢*Jo+[—12¢A(Q —q)*—8¢(Q —¢)*—8¢*(Q —¢)]}a,b_,

+ {0’ +4Q% —[—3Q*+80Q°—8I7 ']}b,=0, (B2)

{0 +4(Q—g o—[—3(Q—¢)*+8(Q—¢—8I; ' 1}b_; —([49Q —2¢ o +[—12¢°Q*+89Q° +8¢°Ql}a_ b, =0 .

(B3)

Note that we have kept only the leading nonlinear terms in the amplitude |a;|. Requiring the determinant of this sys-
tem to be identically zero, we obtain the equation for the eigenvalues », which can be written as follows:

[0 = N[o—wy@—q)llo—0o@)][o—0¢(Q—g)]

=4|a,’[6g%(Q —¢)*+4g9(Q—¢)*+44*(Q—q)+q(2Q —q)0][6¢°Q*— 490> —4¢°Q —¢(2Q —¢)w]
=4|a,Y[Q*—(Q—¢)*—¢*+q (20 —ql0]X[(Q—¢)*—Q*—¢*—¢ (20 —q)w]

=4|a,[*{¢*—[q(¢ —2Q)w+(Q—q)*—Q**}, (B4)

where we have set

oo(Q)=—2Q°—[Q*+80*—8I;']'*.

(BS)

At this stage, we have not yet used that at the intersection point we have Q =¢q /2. Doing so, we obtain
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0=wy(Q)+5 (B6)
where 8 is of order of |a,|. A simple algebraic manipulation yields

o Hai*{g*~[9(g—2Q)ol Q) +(Q —g)*—0*]}]

&
[@o(@)—oo(@)][wy(Q)—0(@—q)]
(B7)
At this stage, we have not yet used that at the intersection point we have @ =¢ /2. Doing so, we obtain
e Haild’ - la, %" , (B8)
lwg(q/2)—0oo(g/2)1*  |(g/2)*+8(q/2)*—8If
We can now write the final expression of the eigenvalue w as
la,lg*
o=0g/2)% i . (B9)

|(g/2)*+8(q/2)*—81; 1|12

This result means that the resonant coupling between the incident wave Q and the reflected one Q —g results in the
creation of an energy gap, similar to the energy gap in solid-state physics.

Let us now deal with the VB mode which corresponds to the situation where the incident wave function couples to
the transmitted one ( i.e., where wy(Q)=w(Q)[ =wy(Q +¢g)]). In this case, the eigenmode takes the form

Bx)=bye'@+beiQtex (B10)
which leads to the following system:
{[49(Q+9)—2¢%lo+[—12¢*(Q +¢)*+8¢(Q+¢)*+8¢*(Q +q¢)]}a_,b,
—{0*+4Q%0—[—3Q*+8Q%—8I;!]}by=0, (BI1)
{0+ 4 Q+q) o—[—3(Q+q)*+8(Q+¢)*—8I71}b, +{[49Q +2¢%]w+[12¢2Q%+8¢Q*+8¢°Q]}a;by=0.  (B12)

As previously, only the leading-order terms in the amplitude |a,| have been retained. The solubility condition of this
system give us the equation for the eigenvalues:

[0—wy(Q)[0—wyQ+q)[0—0yQ)[0—0oQ+q)]=4la,*{qg®—[q(g +2Q)0+(Q +9)*—Q*]*} . (B13)
Writing

0=0yQ)+3§, (B14)
we obtain

,_ 4lay*{q®—[q(g+2Q)0y(Q)+(Q +¢)* —Q*1}
B [0o(@)—0o(Q) [0y @) —0(Q +4)]

It is easy to check that 82 is negative in almost all interesting cases. Plotting the numerator as a function of g for fixed
17! (Q is determined from g by the intersection condition), we find that for /7 ! > 0.2, 8 is negative whatever the value
of g. For smaller /7!, there is a small interval of g values around g = 1.5, where 8 is positive. In that region we do not
expect our perturbation theory to work in any case. As for the denominator, it is always positive since oy(Q) is nega-
tive whatever the value of Q.

The final result can be then written as

l{g®—1g(g+2Q)wy(Q)+(Q +¢)*—Q*1*}|'/?

(B15)

o=0yQ)*2ila,] (B16)
" [0 @)= 0o @) [0 Q) — 0o @ +¢)1] 72
One sees that now the resonance results in the appearance of a complex eigenvalue.
[1] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 325, 444 Lett. 63, 2574 (1988).
(1964). [4] C. Faivre, S. de Cheveigné, C. Guthmann, and P.
[2] P. Oswald, J. Bechhoefer, and A. Libchaber, Phys. Rev. Kurowski, Europhys. Lett. 9, 779 (1989).
Lett. 58, 2318 (1987). [5] M. Rabaud, S. Michalland, and Y. Couder, Phys. Rev.

[3] A. J. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev. Lett. 64, 184 (1990).



5494 KASSNER, MISBAH, MULLER-KRUMBHAAR, AND VALANCE 49

[6] P. Oswald, J. Phys. (France) II 1, 671 (1991).

[7] I. Mutabazi, H. Hegset, C. D. Andereck, and J. Wesfreid,
Phys. Rev. Lett. 64, 1729 (1990).

[8] L. Limat, P. Jenffer, B. Dagens, E. Touron, M. Fermigier,
and J. E. Wesfreid, Physica D 61, 166 (1992).

[9] P. Coullet, R. Goldstein, and G. H. Gunaratne, Phys. Rev.
Lett. 63, 2574 (1989).

[10] K. Kassner and C. Misbah, Phys. Rev. Lett. 65, 1458
(1990); 66, 522(E) (1991); C. Misbah and D. E. Temkin,
Phys. lev. A 46, R4499 (1992).

[11] H. Levine and W. J. Rappel, Phys. Rev. A 42, 7475 (1990).

[12] K. Kassner, C. Misbah, and H. Miiller-Krumbhaar, Phys.
Rev. Lett. 67, 4551 (1991).

[13] P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 (1990).

[14] A. Karma and A. Sarkissian, Phys. Rev. Lett. 68, 2616
(1992), and references therein.

[15] B. Caroli, C. Caroli, and B. Roulet, J. Phys. (Paris) 43,
1767 (1982).

[16] C. Misbah (unpublished).

[17] K. Brattkus and S. H. Davis, Phys. Rev. B 38, 11452
(1988).

[18] A. Ghazali and C. Misbah, Phys. Rev. A 46, 5026 (1992).

[19] K. Kassner, Pattern Formation in Diffusion-Limited Crys-
tal Growth [World Scientific, Singapore (in press)].

[20] K. Brattkus and C. Misbah, Phys. Rev. Lett. 64, 1935

(1990), and references therein.

[21] A. Valance, Stage de DEA de Physique, Université Paris
7, 1991.

[22] B. A. Malomed and M. 1. Tribelsky, Physica D 14, 67
(1984); M.R. E. Proctor and C. A. Jones, J. Fluid Mech.
188, 301 (1988); H. Levine, W. J. Rappel, and H. Riecke,
Phys. Rev. A 43, 1122 (1991).

[23] By this we mean that there is a gap in the wave numbers
corresponding to real growth rates . Of course, o is
defined for all wave numbers. Alternatively, one could say
that a gap is created in the imaginary part of @ (which was
zero before the interaction).

[24] A. Valance, K. Kassner, and C. Misbah, Phys. Rev. Lett.
69, 1544 (1992).

[25] K. Kassner, A. Valance, C. Misbah, and D. E. Temkin,
Phys. Rev. E 48, 1091 (1993).

[26] H. Jamgotchian, R. Trivedi, and B. Billia, Phys. Rev. E
47, 4313 (1993).

[27] S. Fauve, S. Douady, and O. Thual, Phys. Rev. Lett. 65,
385 (1990).

[28] S. Fauve, S. Douady, and O. Thual, J. Phys. (France) II 1,
311 (1991).

[29] K. Kassner and C. Misbah, Phys. Rev. A 44, 6533 (1991).

[30] G. Faivre and J. Mergy, Phys. Rev. A 45, 7320 (1992).

[31] C. Misbah and A. Valance, Phys. Rev. E 49, 166 (1994).



0.0 0.5 1.0 1.5 2.0
X/ A
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where [ '=0.285 and ¢=0.9.



20 [

15 -
E.
+ 10 -
B
2
w5 |
0_ —
[ I T T T
00 05 10 15 20
(a) X/N

CXT)+ T

0.0 05 10 15 20
(b) X/X

FIG. 11. A pattern showing the development of a cusp
singularity (a) in the one-sided model (v=0), which is cured
after allowance of a small amount of diffusion (v=10"2) in the
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| 1

i

>

Fe

\

<

el
o

I
T o]

__

X)3

X/

one-sided mo

p poral portra
v=0). Parameters: /7 '=0.55and ¢ =1.0

del (



¢(X,T) + T

FIG. 13. The spatiotemporal portrait of the VB state in the
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